翻訳と辞書
Words near each other
・ Breton Women at a Wall
・ Breton Woods, New Jersey
・ Breton, Alberta
・ Breton-Prétot machine
・ Bretona
・ Bretoncelles
・ Bretonne (album)
・ Bretonne Pie Noir
・ Bretonnières
・ Bretons
・ Bretonstone
・ Bretonvillers
・ Breton–Norman War
・ Bretsch
・ Bretschneider
Bretschneider's formula
・ Bretschneidera
・ Bretstein
・ Brett
・ Brett Abrahams
・ Brett Aitken
・ Brett Alderman
・ Brett Alegre-Wood
・ Brett Alexander Savory
・ Brett Allen
・ Brett Allison
・ Brett Anderson
・ Brett Anderson (album)
・ Brett Anderson (baseball)
・ Brett Anderson (disambiguation)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bretschneider's formula : ウィキペディア英語版
Bretschneider's formula

In geometry, Bretschneider's formula is the following expression for the area of a general convex quadrilateral:
: K = \sqrt \right)}
::= \sqrt abcd (1 + \cos (\alpha+ \gamma) )} .
Here, ''a'', ''b'', ''c'', ''d'' are the sides of the quadrilateral, ''s'' is the semiperimeter, and \alpha \, and \gamma \, are two opposite angles.
Bretschneider's formula works on any convex quadrilateral, whether it is cyclic or not.
The German mathematician Carl Anton Bretschneider discovered the formula in 1842. The formula was also derived in the same year by the German mathematician Karl Georg Christian von Staudt.
== Proof of Bretschneider's formula ==
Denote the area of the quadrilateral by ''K''. Then we have
: \begin K &= \text \triangle ADB + \text \triangle BDC \\
&= \frac + \frac.
\end
Therefore
: 4K^2 = (ad)^2 \sin^2 \alpha + (bc)^2 \sin^2 \gamma + 2abcd \sin \alpha \sin \gamma. \,
The Law of Cosines implies that
: a^2 + d^2 -2ad \cos \alpha = b^2 + c^2 -2bc \cos \gamma, \,
because both sides equal the square of the length of the diagonal ''BD''. This can be rewritten as
:\frac = (ad)^2 \cos^2 \alpha +(bc)^2 \cos^2 \gamma -2 abcd \cos \alpha \cos \gamma. \,
Adding this to the above formula for 4K^2 yields
: \begin 4K^2 + \frac &= (ad)^2 + (bc)^2 - 2abcd \cos (\alpha + \gamma) \\
&= (ad + bc)^2 - 4abcd \cos^2 \left(\frac\right).
\end
Following the same steps as in Brahmagupta's formula, this can be written as
:16K^2 = (a+b+c-d)(a+b-c+d)(a-b+c+d)(-a+b+c+d) - 16abcd \cos^2 \left(\frac\right).
Introducing the semiperimeter
:s = \frac,
the above becomes
:16K^2 = 16(s-a)(s-b)(s-c)(s-d) - 16abcd \cos^2 \left(\frac\right)
and Bretschneider's formula follows.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bretschneider's formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.